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Abstract: Unobtrusive physiological sensors that 
seamlessly integrate in the automotive environment 
provide a novel way to measure driver’s health and 
well-being. A driver pilot was conducted to test the 
accuracy of some new unobtrusive and wearable 
physiological sensors that currently are under 
development. Six drivers drove a pre-defined route 
twice, once during light and once during dark 
conditions. The drive included different road types to 
be able to identify possible differences in 
measurement precision. Heart rate measurements 
were done using a standard ECG method as well as 
via two types of unobtrusive measurements. These 
included a watch equipped with a photo-
plethysmograph and a driver seat that was equipped 
with capacitive ECG sensors. Skin conductance 
levels were measured by means of dry sensors at 
the finger and a wristwatch was used for unobtrusive 
skin conductance measurements. Results show high 
intraclass correlation between the unobtrusive and 
reference physiological measurements while driving 
in different conditions. This evaluation demonstrates 
the potential for unobtrusive tracking of driver’s 
health and well-being in the car. 
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1. Introduction 

 
Modeling the car and its environment gets a lot of 
attention and has become sophisticated. The model 
of the human being inside the car is, however, much 
less advanced yet and still plays a minor role in 
advanced driver assistance systems. Nevertheless, 
the condition of the driver can have a big influence 
on the performance of the car, as well as on comfort 
and safety. Moreover, many car brands see health & 
well-being as the next step - after safety - in their 
continuous improvement of the automotive 
environment. To illustrate, from an insight and 
marketing study, eight topic clusters in the health 
and well-being domain for human centric automotive 
were identified and some promising concepts were 
verified [1]. These eight topics range from “taking 
care of yourself on the go” to “providing mobile 
emergency care”. In most of the identified topic 
clusters, sensing physiological parameters to track 

and improve the health and well-being of the driver 
played an important role.  
 
In order to get insight into physiological input data 
about the driver - for driver assistance systems and 
other automotive health & well-being applications - 
we have started driving tests with a variety of 
physiological sensors.  
 
Ideally, the physiological sensors to be used would 
be unobtrusive and contactless. There are some 
promising examples, like the vital signs camera 
developed by Philips [2], but a single type of sensor 
is rarely sufficient for an application and often it turns 
out difficult to achieve the required automotive 
robustness. Therefore, we broadened our scope to 
unobtrusive but not necessarily contactless sensors. 
To illustrate, Healey and Picard (2000) [3] were one 
of the first to equip a car with a variety of 
physiological sensors, among which heart rate and 
skin conductance level sensors, to measure driver 
stress. Results show that the input from a 
combination of signals leads to higher recognition 
performance (88%) of stress compared to the best 
single feature (62%). Therefore, triangulation of 
different sensor data is proposed to create the 
required for reliability to infer any health or well-being 
measurement from automatic measurements 
indicating the driver’s condition [4]. 
 
The choice of objective automatic measurement of 
the driver condition depends on the application. 
Namely, physiological features have been shown to 
correlate with several different human conditions. An 
extensive amount of research for mainly cognitive 
(i.e., fatigue and mental workload [5]) or affective 
(i.e., mood or emotions) instead of healthcare- 
related applications has already been conducted in 
driver simulators. For example, it has been shown 
that during anger inducing rides, a positive calm, 
compared to a negative, activating in-car 
environment can reduce cardiovascular load, 
measured by among others blood pressure and 
heart rate [6]. Also, in difficult driving situations, 
induced calmness is able to lower sympathetic 
nervous system activity (i.e., measured with skin 
conductance) which is related to arousal [7].  
 
Evaluations of physiological measurements in real 
cars are conducted less often. During studies in real 
cars, increases in heart rate have been reported in a 
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drive through the wood compared to a baseline 
driving condition [8]. More recently, [9] included 
several physiological sensors in a real car to 
measure driving workload. They found higher skin 
conductance level (SCL) values in the 30 km/hour 
part of the drive compared to driving on a freeway. 
Cardiovascular and skin conductance measures 
hence show to be potentially meaningful for 
assessing driver conditions during simulated and 
real drives for a variety of applications. In most of the 
driving studies conducted, however, obtrusive and 
wired ways to measure physiological signals were 
used. These include the above examples and 
illustrate that the focus of pervasive adaptive driver 
support systems that include physiological 
measurements still is at the measurement quality 
and interpretation level.  
 
In order to get experience with and insights into 
relevant input data about the driver for driver 
assistance systems and other automotive health & 
well-being applications, we have started driving tests 
with a variety of unobtrusive and wearable sensors. 
In this paper we show a pilot in which the 
performance and accuracy of unobtrusive 
physiological measurements of drivers is evaluated. 
For this purpose, two types of unobtrusive 
physiological measurement devices that are 
currently being developed at Philips Research are 
included: heart rate and skin conductance level 
measurements.  
 
For unobtrusive heart rate measurement a 
photoplethysmography (PPG) embedded in a wrist 
watch was used (e.g., [10]). Besides PPG 
measurements, the watch has an accelerometer in 
order to acquire information about possible 
movement artefacts. Capacitive ECG is the second 
method we included to unobtrusively measure heart 
rate in the car. The advantage of capacitive ECG is 
that it is contactless i.e., the driver does not have to 
wear a sensor; instead, the sensors can be 
connected to the driver seat. Both PPG sensors and 
capacitive ECG sensors are highly susceptible to 
movement artefacts. Therefore, we expected higher 
accuracy of the signal when less movement of the 
car is present. 
 
Unobtrusive skin conductance measurements were 
done with the discrete tension indicator (DTI-2) [11]. 
The DTI-2 sensor bracelet measures skin 
conductance at the wrist, besides measuring skin 
temperature and wrist movement. Skin conductance 
level is a tonic, slowly varying signal. Therefore, the 
signal is expected to be less influenced by motion 
artefacts created by different road types.  
 
Because our interest concerns real-life data, we let 
the test participants drive in a normal car (equipped 

with sensors) on public roads, instead of using a 
driving simulator or closed driving track. Although as 
a consequence the test conditions can be controlled 
to a lesser extent, we believe that this is outweighed 
by the benefits of information about real-life usage 
and robustness. To identify the accuracy on different 
types of road, the drive passed different segments 
including an industrial area, highway, city drive, 
residential area drive. In addition, the drives were 
conducted during day as well as during night time to 
be able to investigate the impact of light and dark on 
the driver and the measurements.  
 

2. Method 
 

2.1 Participants and design 
 
Six Philips Research employees (4 males, 2 
females, average age 33 years, SD=7 years) 
participated in the driving evaluation. The 
participants had their driving license for on average 
of 14.8 years (min 7 years, max 27 years). They had 
driven on average 1483 km per year for the last few 
years (min 2000 km/year, max 30000 km/year). 
Each participant signed an informed consent before 
participating.  
 
Each session started with a 3 minute baseline 
measurement in the car. The driving evaluation 
followed a within-subject design, so that all 
participants drove twice; once in light conditions and 
once in darkness. The order of the driving conditions 
(light / dark) was counterbalanced over participants.  

 

2.2 Drive 
 
A Ford Focus station wagon (year 2013) with manual 
gear was used for the driving test. The drive 
consisted of a predefined 14.5 km long, 30 minute 
drive including four different road types divided in 
seven sections (see Figure 1, Table 1). The drive 
was in an area that was familiar to the drivers.  
 

 

Table 1 A description of the different road types, the 
maximum speed (S, km/hour), and mean duration 
(D, min.sec) of the 14.5 km long drive. 
Section S D Description 

1 Industrial1  50 2.46 From the starting point to the 
high way 

2 Highway 80 2.41 Highway Eindhoven towards city 
center Veldhoven 

3 City Drive 1 50 4.32 From highway toward city center 
Veldhoven 

4 Residential1 30 1.19 City center Veldhoven, many 
bumps 

5 City drive 2 50 8.4 Urban ring from Veldhoven 
towards Eindhoven 

6 Residential2 30 4.2 Road with many bumps 
7 Industrial2 50 3.0 Back to end point and parking 
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Figure 1 The 14.5 km, 30 minute drive in Eindhoven 
area. The numbers indicate the start/end of a drive 
segment. 
 

2.3 Subjective measurements 
 

The three dimensions of the Bond and Lader mood 
questionnaire were assessed before and after the 
drive [12]. The questionnaire contains 16 items, 
referring to 3 dimensions, i.e. alertness (9 items), 
contentedness (5 items), and calmness (2 items). 
The questions were presented on a 10 cm VAS 
scale. After the drive a 1-dimensional effort scale 
was used to assess the drivers effort levels during 
each driving segment. The driver was asked to 
answer on a continuous scale from 1 till 100, 
representing the 1-10 cm VAS scale in millimeters. 
These calmness ratings were normalized using z-
transformations to allow inter participant 
comparisons.  
 

2.4 Heart rate measurements 
 
Three different measurement techniques were used 
to acquire heart rate (See Figure 2). First, the 
NeXus-10 device (MindMedia B.V., Roermond, the 
Netherlands) was used in standard Lead II electrode 
placement to measure ECG (sample frequency 1024 
Hz) in the standard lab way (Stern, Ray & Quigley, 
2000). The measurements were taken using Ag-
AgCl disposable sensors, containing a solid gel. The 
signal was pre-processed by automatically detecting 
the R peaks from the raw ECG signal after filtering 
the signal (0.05-40 Hz). After automatic detection the 
signal was visually inspected for errors: misdetected 
peaks were corrected manually. Successively, the 
distances between the successive R peaks, the 
interbeat intervals (IBI), were calculated to determine 
the heart rate (IBI/60). 

 
Figure 2 The sensors connected to a driver. The 
PPG watch to measure heart rate can be seen on 
the left wrist. The DTI-2 sensor bracelet to measure 
skin conductance can be seen at the right wrist. The 
small blue box is the NeXus device which is used for 
the wired reference measurements. 
 
Second, a wristband equipped with a 
photoplethysmograph (PPG) was used to measure 
heart rate. The PPG device is being developed at 
Philips Research and also includes a 3D 
accelerometer. This is based on the same 
technology that Philips has licensed to power up 
sport watches such as the MIO Alpha, Adidas 

MiCoach SmartRun, TomTom Cardio Runner [13]. 
The optical device projects light to the skin and 
measures the reflection of the blood to acquire the 
PPG signal. The PPG wrist device was connected to 
the left wrist of the drivers. Two types of software 
analysis methods were used for the analysis of the 
PPG signal. In the first method, automatically 
detected interbeat intervals (IBI’s) were only trusted 
and incorporated in further analyses, when 
movement levels of the wristband did not pass a set 
threshold. This threshold was set very low to 
guarantee correct detection of IBI’s. The detected 
IBI’s were then recalculated to heart rate in beat per 
minute (PPG_IBI). The second method always 
output average heart rate measurement per one 
second intervals (PPG_HR). This algorithm 
averages heart rates over a moving window of a few 
second intervals which made it more robust against 
motion. 
 

DTI-2 

PPG 
watch 
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Figure 3 The two sensors of the capacitive ECG are 
connected to the back of the chair. The cloth acting 
as ground plate can be seen on the chair. 
 
Third, heart rate was measured via capacitive ECG 
(cECG). cECG was measured by integrating two 
capacitive sensors and a ground plate in the car seat 
(sample frequency 1024 Hz, see Figure 3). Because 
the sensor electrode is coupled capacitively to the 
skin, the sensor can measure heart rate through 
clothing. From the sensors the data were transmitted 
to the NeXus 10-device. For the current pilot set-up 
no mechanical amplification of the raw capacitive 
ECG signal was included in the car. As a result, the 
normally visible large heart peaks (R peak) known 
from ECG measurements appeared smaller in the 
capacitive ECG measurements. This did made it 
harder to distinguish R peaks from the rest of the 
signal and especially from movement artefacts. 
Therefore, for this evaluation automatic detection of 
R peaks was done using the three lead ECG 
placement electrodes as a reference. The algorithm 
searched for R peaks in the cECG signal only at 
places 50 ms before and after an R peak was 
detected in the reference ECG signal. Additionally, 
detected R peaks were solely accepted if they had a 
cross correlation of 0.7 and higher with the detected 
R peaks in the lead II ECG signal. Successively, the 
HR was calculated from the IBI’s (IBI/60). 
 
 

2.5 Skin conductance measurements 
 
Skin conductance level (SCL) measurements in the 
standard recording manner were done with the 
NeXus 10 device (sample frequency 1024 Hz). The 
sensors included dry Ag-AgCl finger electrodes 
which were attached to Velcro strips. The electrodes 
were strapped around the middle phalanxes of the 
middle and little finger of the right hand, in such a 
way that the driver was not restricted in a using the 
steering wheel and gears. 

 
Figure 4 The top figure shows the reference ECG 
signal and the bottom figure shows the capacitive 
ECG signal. Halfway the signal, an example of a 
movement artefact in the capacitive ECG signal can 
be seen. The white dotted lines show the detected R 
peaks.  
 
The discrete tension indicator 2 (DTI-2) wrist band 
was used for unobtrusive measurements of skin 
conductance (sample frequency 10 Hz) [11]. The 
DTI-2 is being developed by Philips Research and 
combines multiple sensors measuring not only skin 
conductance but also 3D acceleration, skin 
temperature and ambient light. The wrist band was 
attached to the right wrist of the driver.  
 
Small movement artefacts were removed from the 
reference_SCL and the DTI_SCL by a low-pass filter 
at 0.5Hz. To be able to compare the signal over 
different participants, the skin conductance level was 
normalized using z-scores by taking the mean and 
standard deviation of the whole signal i.e., baseline 
and drive. Successively, the mean normalized SCL 
per segment was determined.  
 

2.6 Other physiological measurements 
 
The physiological measurements of skin temperature 
and respiration were additionally acquired during the 
drive. They are not fully analyzed yet at this point in 
time. 
 

2.7 Protocol 
 

After reading the information letter and signing the 
informed consent the participants were seated in the 
car. Then the participant adjusted the seat and 
mirrors to the driver preferences and the sensors 
were attached. The participant was then asked to sit 
calm and relax for three minutes without speaking 
and with the car engine switched on in order to take 
a baseline measurement. Next, the participant filled 
out the mood questionnaire after which he was 
asked to start to drive as he would normally do while 
following the directions of the GPS system. The 
experimenter was seated in the back of the car and 
accompanied the participant during the drive. They 
both did not speak during the drive to not interrupt 
the physiological measurements. When the drive 

Driver changes 
position 
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was finished the participant filled out the mood 
questionnaire once more. Then the sensors were 
detached and the participant was thanked for his 
participation. The protocol was repeated for the 
second measurement which solely differed in the 
measurement conditions (dark/light). 
 
 

3. Results 
 

Missing data occurred for the physiological data of 
one participant during the light condition. The 
analyses were applied to the remaining data. The 
physiological measurements of skin temperature and 
respiration that were additionally acquired during the 
drive are not fully analyzed yet at this point in time. 
At a first glance this data appear to contain less 
interesting information.  
 
 

3.1 Subjective effort measurements 
 
The subjective effort acquired after each driving 
segment at the end of the drive showed a significant 
main effect of the driving section (generalized linear 
model F(6,69)=2.41, p=.036). Effort ratings were 
higher in the first industrial drive compared to the 
cityDrive_2 and the industrial drive_2. The industrial 
drive_2 had lower effort ratings compared to the city 
drive_1 and the residential are_2. Effort levels in the 
first driving section were highest and lowest in the 
last section. This could be due to the experiment 
setup and getting used to the car. No differences 
were found in the light and dark conditions 
(generalized linear model F(1,69)=0.00, p=1.0). 
Therefore, the combined effort measurements are: 
Industrial1 0.55/ high way -0.22/ city drive1 0.21/ 
residential1 0.01/ city drive2 -0.34/ residential2 0.44/ 
industrial2 -.071. No significant intraclass 
correlations were found between the effort ratings 
and the physiological measurements. 
 
No multivariate differences in the pre and post mood 
measurements were found in the light and dark 
conditions (F(3,8)=.250, p=.86). The pre and post 
mood measurements solely showed a marginal 
increase in alertness pre compared to post drive 
(alertness pre M= 45.4 (SD=3.0), post M=60.8 
(SD=11.7); Contentedness pre M=68.5 (SD=5.4) 
post M=67.1 (SD=14.9); Calmness pre M=62.8 
(SD=12.6), post=58.1 (SD=9.7).  
 

3.2 Heart rate measurements 
 

As expected, all the R peaks could be detected from 
the reference and the Lead II ECG placement, 
independent of the road section. The percentage of 
detected R peaks of the capacitive ECG and the 
PPG_IBI are shown in Table 3. The PPG_HR always 

provided HR output every second and therefore had 
full data coverage. From Table 3 it appears that the 
percentage detected IBIs of the PPG signal was 
highest in the baseline condition. It has to be noted 
that especially in the cECG measurements a large 
variability existed between the percentages of 
detected IBI’s (see also Figure 5).  
 
As hypothesized the areas with most movement 
noise, the residential areas, turn out to cause most 
difficulties for the reliable detection of successive R 
peaks, hence IBI’s. During the drive no differences 
could be detected in the number of detected heart 
rates in the light compared to the dark conditions 
(cECG light M=58% (SD=9%), dark M=53% 
(SD=11%); PPG_IBI light 16% (SD=10%), Dark 
M=11% (SD=8%)).  
 
The average heart rates for each driving segment 
are presented in Figure 6. Errors in the detected  
heart rates were calculated by taking the mean 
absolute difference between the ECG reference and 
the other heart rate data (see Table 4). The standard 
deviations of these errors were calculated to indicate 
the precision. Significant intraclass correlations (all 
p<.001) of the reference HR with the other HR 
measurements were found: cECG r=.998; PPG_IBI 
r=.830; PPG_HR r=.951.  
 

 

 
Figure 5: The percentage of detected IBI’s of the 
Capacitive ECG (cECG). Each line represents the 
data of one session. 
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Table 3: The percentage of detected IBI’s of the 
capacitive ECG (cECG) and the PPG IBI algorithm 
compared to the reference ECG measurement. The 
PPG_HR had continuous data coverage and was 
therefore not included in this table. 

 cECG PPG_IBI 

 mean min max mean min max 

Baseline 64 2 100 94 79 100 
Industrial 1 40 14 91 9 0 22 
Highway 68 25 99 20 0 70 
CityDrive 1 61 15 99 17 2 36 
residential 1 46 12 95 0 0 0 
CityDrive 2 64 14 100 27 0 55 
Residential 2 53 11 99 4 0 24 
Industrial 2 54 8 99 16 0 46 

 
 
 

 
Figure 6: The average HR measured via the 
reference ECG, capacitive ECG (cECG), and the 
PPG. The PPG wrist signal has been analyzed in 
two ways, via exact successive detected IBI’s 
(PPG_IBI) and via the continuous averaged HR 
(PPG_HR). No HR’s were detected in the 
Residential 1 for PPG_IBI, therefore a HR prediction 
is missing. 
 

 

Table 4: The mean absolute differences (MAD) and 
their standard deviation (SD) in heart rate (beat / 
minute) compared with the reference heart rate 
taken from the ECG.  

 cECG PPG_IBI PPG_HR 
 MAD 

b/pm 
SD 
b/pm 

MAD 
b/pm 

SD 
b/pm 

MAD 
b/pm 

SD 
b/pm 

Baseline 1.30 2.24 0.21 0.20 1.48 2.61 

Industrial 1 0.77 0.70 3.66 3.78 5.11 4.38 

Highway 0.59 0.55 4.21 6.87 5.12 4.11 

CityDrive 1 0.58 0.51 3.23 1.73 3.22 2.80 

residential 1 0.62 0.40 NaN NaN 5.07 5.83 

CityDrive 2 0.52 0.50 3.59 4.02 2.45 2.83 

residential 0.56 0.52 5.36 2.71 2.69 2.55 

Industrial 2 0.42 0.49 3.03 1.86 3.02 2.94 

 

3.3 Skin conductance measurements 
 
A significant intraclass correlation (r=.57, p<.001) 
was found between the normalized SCL values 
measured at the fingers (Reference_SCL) and at the 
wrist (DTI_SCL). This implies that both signals follow 
a similar pattern. Figure 7 shows the normalized 
values of the SCL. 
 
 

 
Figure 7: The average normalized skin conductance 
level per driving segment. The reference SCL is 
measured at the fingers. The DTI SCL is measured 
at the wrist. 
 
 

4. Discussion 
 

Health & well-being of the driver will become 
increasingly important in cars of the future. As a 
result unobtrusive measurements of driver 
physiology will be incorporated in future cars. In that 
way our cars could help us to continuously track our 
health, or provide feedback when our mental load or 
fatigue levels are increasing. Short-term 
measurements of driver stress and health pattern 
could lead to early recognition of changes in driver’s 
condition which can be used to provide feedback on 
the current driving situation. Measurement 
information over a longer time period like weeks or 
months, which can be acquired during daily or 
weekly drives, can potentially indicate changes in 
driver’s health situation. By creating awareness of 
this situation the car could possibly initiate changes 
in lifestyle patterns. The pilot study described in this 
paper showed a first evaluation of the reliability of a 
set of currently available wearable sensing methods 
of heart rate and skin conductance. Both heart rate 
and skin conductance measurements showed a high 
inter class correlation with the reference 
measurements. 

As expected, the accuracy of the watch equipped 
with a PPG sensor showed a dependency on the 
amount of movement artefacts. This is illustrated 
during the baseline measurement where almost 
100% correct detection of all successive heart beats 
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(IBI’s) were found. Also, the detection of IBI’s was 
worse while driving through the residential areas 
showing the sensitivity of the wristwatch to motion 
artefacts. This led to the highest precision in heart 
rate predictions in the baseline part, and additionally 
implies that the correct number of detected IBI’s 
influenced the precision of calculation of the average 
heart rate.  

Because the PPG watch uses light to measure the 
PPG this sensor was the sensor in this pilot that 
could possibly show differences in precision in light 
or dark circumstances. The results do not show any 
difference, indicating that the Philips technology 
integrated in the watch can be used independent of 
ambient light conditions 
 
The second heart rate algorithm that is embedded in 
the PPG watch continuously provides as output a 
heart rate estimation based on the whole PPG 
signal. The precision of this signal might sometimes 
be slightly less; however, this is compensated by far 
lower dependency on movement artefacts resulting 
in continuous data coverage. In applications that 
only require heart rate information, for example for 
well-being purposes, the continuous heart rate 
algorithm might give enough information. Contrary, 
for a large range of health applications, heart rate 
variability might be required, in order to for example, 
determine cardiac load or different types of stress. 
This variability measurement will only be reliable with 
a large coverage and precision of successively 
detected heart peaks (i.e., R-peaks, hence IBI’s). 
The continuous heart rate algorithm might not suffice 
in that case.  
 
The capacitive ECG measurements showed a high 
precision in the detected heart peaks compared to 
the reference ECG. There appears, however, large 
between-measurement variability in the capacitive 
measurements, i.e., large differences in the number 
of detected R-peaks were found between 
participants. This result is almost certainly caused by 
the position of the driver in the seat or the body 
composition of the driver. For example, when a 
person bends forward, or the shape of the driver 
makes the connection with the sensors disappear, 
no heart peaks can be detected. Possible design 
solutions to increase the data coverage include the 
enlargement of the sensor size to increase the 
contact area with the driver. Also the number of 
sensors can be increased as well as their placement 
to cover a larger area of the car back and seat. In 
this way the best signal can be selected 
continuously.  

The most prominent artefacts of the capacitive ECG 
were caused by severe movements of the car, i.e., in 
residential areas with many traffic bumps. This made 

it more difficult to distinguish heart-peaks from 
(movement) noise. Adding an amplifier to the sensor 
may facilitate recognition in these more challenging 
road conditions in the future. 

In accordance with lab studies, skin conductance 
levels of the wrist show the same response patterns 
compared to those at the fingers [14]. The only 
difference between the two measurement locations 
is the measurement range; the amplitude of the skin 
conductance at the fingers is larger. In this pilot 
possible measurement artefacts could have arose 
from the finger measurements, in cases the drivers 
pressed the fingertips to the steering wheel too hard. 
Even though we had tried to prevent this as much as 
possible by sensor placement and driver instructions 
this could still have happened. This is especially 
visible in the driving parts that had the highest 
indicated effort and could imply that the drivers 
pressed the steering wheel harder during these 
sections (and thereby increasing measurements). It 
shows that objective measurements can sometimes 
be less accurate or even impossible in real world 
situations. Future studies could try to find ways to 
overcome this issue, by for example using 
unobtrusive instead of obtrusive skin measurement 
ways of the condition of the driver. 
 
The current pilot evaluation aimed to show the 
accuracy of unobtrusive wearable physiological 
measurements in the car. Therefore, the route was 
designed to have different road surfaces hence 
noise, it was also designed in an area the drivers 
knew well, and the drive was short so that no 
changes in for example fatigue were expected. As a 
result, drivers did not indicate the drive as difficult. 
Also, differences in effort ratings were only at the 
first section of the drive (higher ratings) and at the 
last section (lower ratings) of the drive. The effect is 
most probably caused by getting familiar with the 
driving setup instead of with the actual road 
segment. Average heart rate and skin conductance 
measurements did not show large variations 
between the different road segments. In a follow up 
study a route could be designed in more extreme 
cases that targets to find correspondence of 
subjective feelings, cognitions or health situations 
and seamlessly integrated physiological 
measurements. For example, much longer drives or 
drives in unfamiliar areas could be included in a 
study. Another option is to run this evaluation test 
with a larger number of participants (larger than 6) to 
increase the power of the analysis. 
 
 

5. Conclusion 
 
This pilot evaluation showed a first step in evaluating 
the feasibility of wearable measurements of 
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physiological signals in the car. Significant 
correlations between the obtrusive reference and the 
unobtrusively acquired heart rate and skin 
conductance measurements were found. For the 
capacitive ECG, we’ve additionally indicated some 
design improvements which should increase the 
detection of a continuous signal and improve the 
signal to noise ratio. The measurements from the 
wrist watches also show large correlations with the 
reference, and they both already have the 
computations embedded in the device. Therefore, 
depending on the application under investigation, 
they seem to be for a large extent already suited for 
continuously daily life driver assessment. For the 
detection of critical health applications, such as a 
cardiac load or an heart attack, however, the 
reliability and robustness of all sensors need to be 
extremely high, and higher than is currently 
obtained.  
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8. Glossary 
 
ECG: ElectroCardioGram 
cECG: Capacitive ECG 
IBI: Interbeat interval 
PPG_HR: Continuous heart rate estimation acquired from 
photoplethysmograph measurements 
PPG_IBI: Heart rate acquired from successively detected 

R peaks (IBI’s) measured photoplethysmograph 
measurements 
SCL: Skin conductance level 
VAS: Visual Analog Scale 




